PFAS Treatment Technologies Subgroup Virginia Department of Health Office of Drinking Water DRAFT Summary June 22, 2021 Scheduled for 1.0 hours (10:00 a.m. – 11:00 a.m.)

1. Opening (10:05 am)

ODW Southeast Virginia Field Office (SEVFO) Director, Dan Horne welcomed all Subgroup members and members of the public to the presentation on cost issues and factors. He advised everyone that the presentation would be recorded, so that those who were not present would be able to view it later.

Dan then introduced the guest speaker, Dr. Erik Rosenfeldt, of Hazen & Sawyer.

2. Presentation on cost issues

(Note: This summary does not attempt to capture all of the material presented, or the questions raised during the presentation. Please refer to slides and recording for additional details.)

Dr. Rosenfeldt provided an overview of the major treatment processes currently available for PFAS removal – activated carbon (powdered and granular), ion exchange, and high pressure membranes (both reverse osmosis and nanofiltration). He included powdered carbon since it can be used as a short-term solution while a longer-term solution is implemented. He also gave other examples of phased approaches.

He then moved to discussion of the costs of treatment systems, covering what factors go into the costs, including capital costs and operating costs. He gave examples of how certain design choices will have impacts to costs in other aspects of a project (e.g. – the choice of how tall the filter shell will be affects the building size, which has an impact on floor slab design and HVAC requirements). He also gave examples of how to get better comparisons between technologies (e.g., between ion exchange and granular carbon), and the role of disposal choices and costs in making treatment technology choices.

The final portion of the presentation featured three case studies. The first case study was a surface water plant in Alabama, looking at both a Phase 1 solution and a future Phase 2 solution for a larger withdrawal. The second case study was a groundwater facility in New Mexico, comparing a larger centralized treatment facility with a smaller "wellhead treatment" approach, featuring a trailer-mounted facility. The final case study was a small (20 to 40 gpm) groundwater facility in New York.

Dr. Rosenfeldt responded to a number of questions during the presentation. More questions were addressed during an ending Q&A session.

3. Adjournment

Dan adjourned the presentation at 11:18 a.m.

The following people from the Subgroup, public, and ODW attended the presentation:

Henry Bryndza (Dupont) Wendy Eikenberry (Augusta County Service Authority) Jamie Bain Hedges (Fairfax Water) Mark Estes (Halifax County Service Authority) Mike Hotaling (Newport News Water Works) Russ Navratil (VA AWWA) Kelly Ryan (Virginia American Water) Dan Horne (ODW)

Nelson Daniel (ODW) Robert Edelman (ODW)

Ellen Egen Erik Rosenfeldt

Hazen

Experiences in PFAS Cost of Treatment

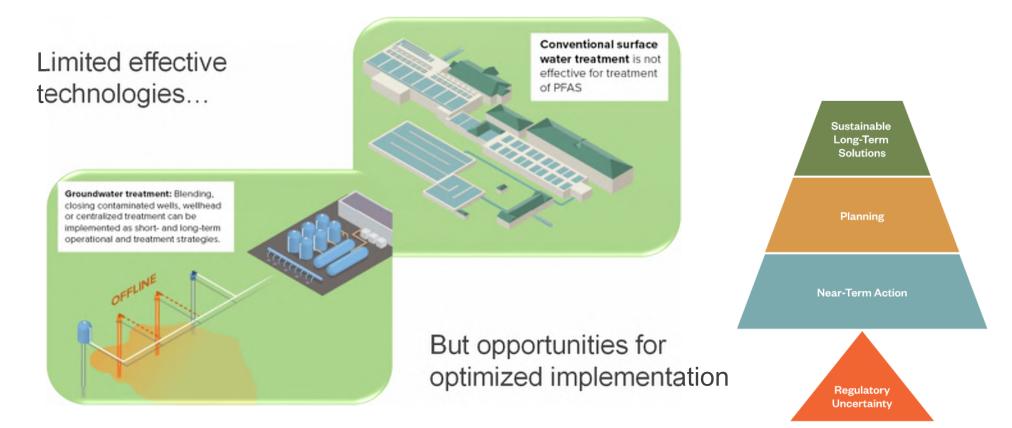
Erik Rosenfeldt, PE, PhD

Director of Drinking Water Process Technologies

Agenda

Introduction

• Treatment Technologies for addressing PFAS – PAC, GAC, RO, IX, alternative media, alternative approaches


- Benefits and challenges to implementation
- Examples of "Phased Approaches"
 - Piloting to distribution
 - "Shutting Down" groundwater wells to achieve treatment
 - Phased Implementation of Carbon PAC \rightarrow GAC

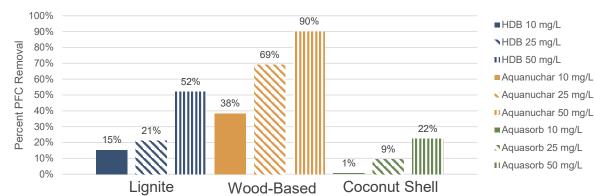
• Cost of PFAS treatment systems?

- · What goes into costs of treatment
 - CapX Design Elements
 - OpX Pumping, media replacement, hidden costs?
 - Size, additional treatment needs
- Case studies

Introduction

PFAS Treatment Options in Drinking Water

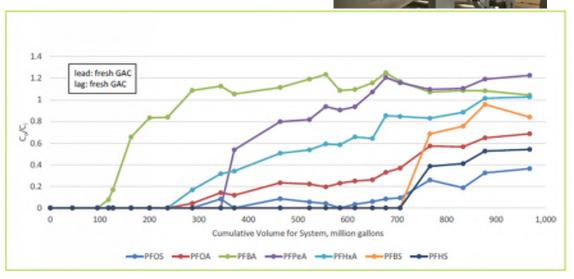
Summary of PFAS removals for various treatment processes


Removal <10%	6 Rem	oval 10-90%	Remova	al > 90%								
	M.W. (g/mol)	AER	COAG/ DAF	COAG/ FLOC/ SED/ G-or M-FIL	ΑΙΧ	GAC	NF	RO	MnO4, O3, ClO2, Cl2, CLM, UV, UV-AOP	ffa		0
PFBA	214	Assumed	Assumed							U.L.		0
PFPeA	264										TT.	
PFHxA	314									GAC	V IX	VRO/
PFHpA	364											
PFOA	414											
PFNA	464		Unknown		Assumed	Assumed						
PFDA	514		Unknown		Assumed	Assumed				Non Non	AND I	A
PFBS	300										V/S	
PFHxS	400									ALC I	0.0	
PFOS	500									Manuel	100	~
FOSA	499	Unknown	Unknown		Unknown	Assumed	Unknown	Assumed	Unknown	XOzone	XAOP	×u
N-MeFOSAA	571	Assumed	Unknown		Assumed	Assumed	Assumed		Unknown			
N-EtFOSAA	585		Unknown		Assumed	Assumed	Assumed		Unknown			

Effective removal of PFAS from source waters depends on target, concentration, raw water quality and other variables (WaterRF 4322)

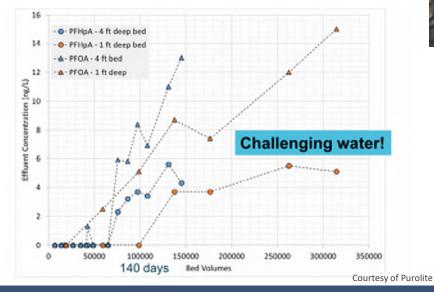
Powdered Activated Carbon Adsorption

- Effective for removal of long chain PFAS (PFOA, PFOS)
- · Less effective for short chain PFAS
 - Less affinity
- Requires High PAC doses and extended contact times for efficient removal
- Performance impacted by water quality and type of carbon used
- · Questions around fate of PFAS in plant residuals



PFOS+PFOA Removal with 1.1 Hour Detention Time

Granular Activated Carbon Adsorption


- Effective for removal of long chain PFAS (PFOA, PFOS)
- Less effective for short chain PFAS
 - Less affinity
 - Breakthrough earlier
 - Carbon usage can be significantly higher
 - Higher O&M costs for GAC regeneration
- Spent Carbon "Reactivation" Possible

Ion Exchange

- PFAS are anions so ion exchange can be effective for removal
- Resin is typically not regenerated at exhaustion due to limitations on discharge
- Typical approach is offsite disposal (incineration)
- Suppliers tout resins selective for PFAS species

Reverse Osmosis / Nanofiltration

- High Pressure membranes provide compound exclusion from permeate
- As close to a "complete" PFAS barrier as exists today
- PFAS concentrated in the reject stream, leading to disposal challenges
- "Loose" NF membranes are being examined for short- and long- chain PFAS rejection at reduced O&M

Parameter	RO Influent (ng/L)	RO Effluent (ng/L)
PFOS +PFOA	18 - 26	ND
PFHxA	19 - 20	ND
PFPeA	16 - 17	ND
PFMOAA	320 - 750	ND – 11
PFO2HxA	12 - 26	ND
GenX	7 - 12	ND
Sum of 45 PFAS tested	423 - 892	ND - 11

Low Pressure Reverse Osmosis Pilot Data

RO concentrate at levels 7 – 10x influent

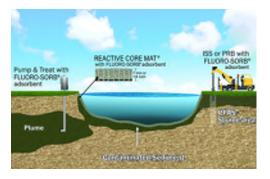
(Data provided in-kind to WRF 4913)

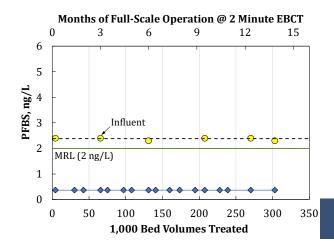
Comparison of PFAS Removal Technologies

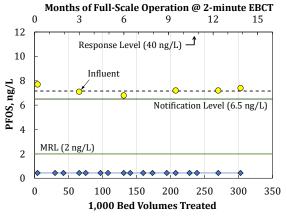
PAC	GAC	Ion Exchange	Reverse Osmosis / Nanofiltration			
Effective for removal of long chain PFAS (PFOA, PFOS)	Effective for removal of long chain PFAS (PFOA, PFOS)	Effective for removal of long chain PFAS (PFOA, PFOS)	Effective barrier to PFAS and almost all additional CECs			
Less effective for short chain PFAS	Less effective for short chain PFAS	More effective for short chain	High energy use			
FFA5		PFAS	Disposal challenges of highly concentrated PFAS reject stream			
Many facilities may already have PAC	Effective Removal of many CECs	PFAS Specificity a blessing and a curse				
High doses of PAC required	Media can be reactivated and put back into service	No media regeneration process				
Long contact time ideal	EBCT required ~ 10 – 15	EBCT ~ 2 – 4 minutes				
Variable PAC performance (water quality and carbon)	minutes					
Impacts to solids handling?						

Novel / Alternative Media

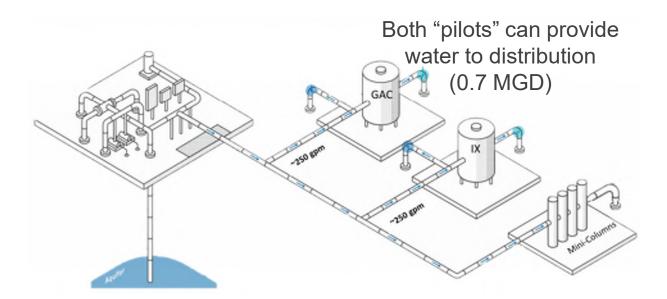
Benefits

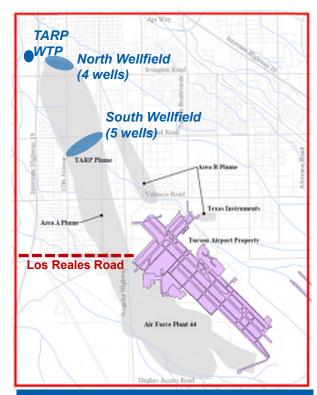

- Similar EBCT as IX but potentially lower cost
- NSF Certified


Drawbacks


- Limited industry track record
- Testing necessary

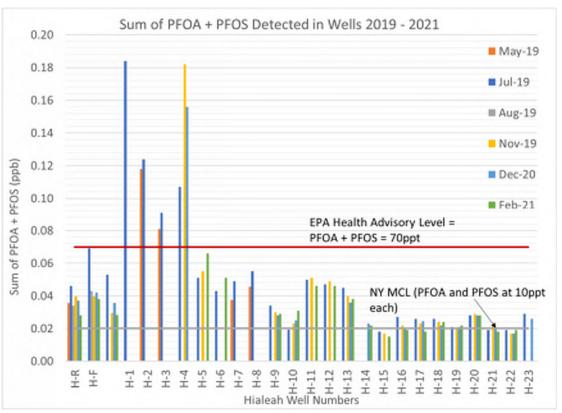
https://www.mineralstech.com/business-segments/performancematerials/cetco/environmental-products/products/fluoro-sorb

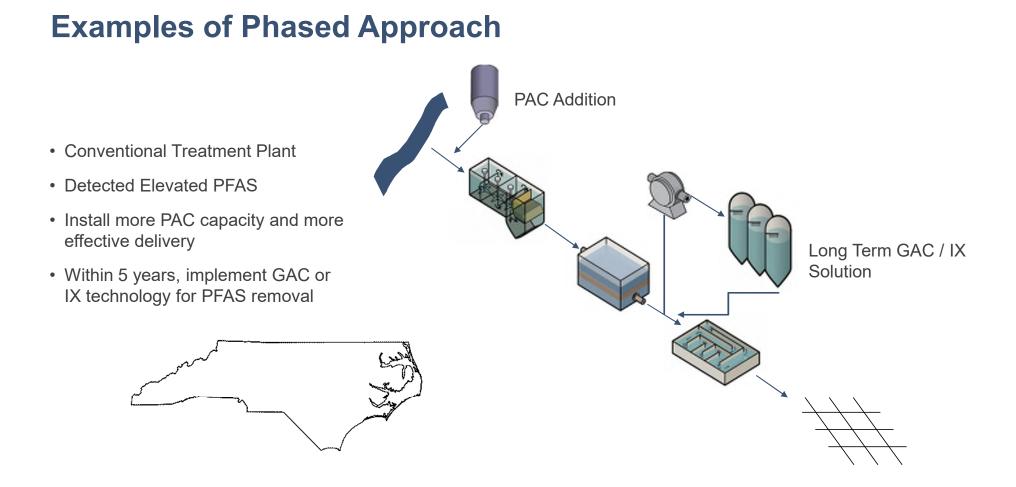




Examples of Phased Approach

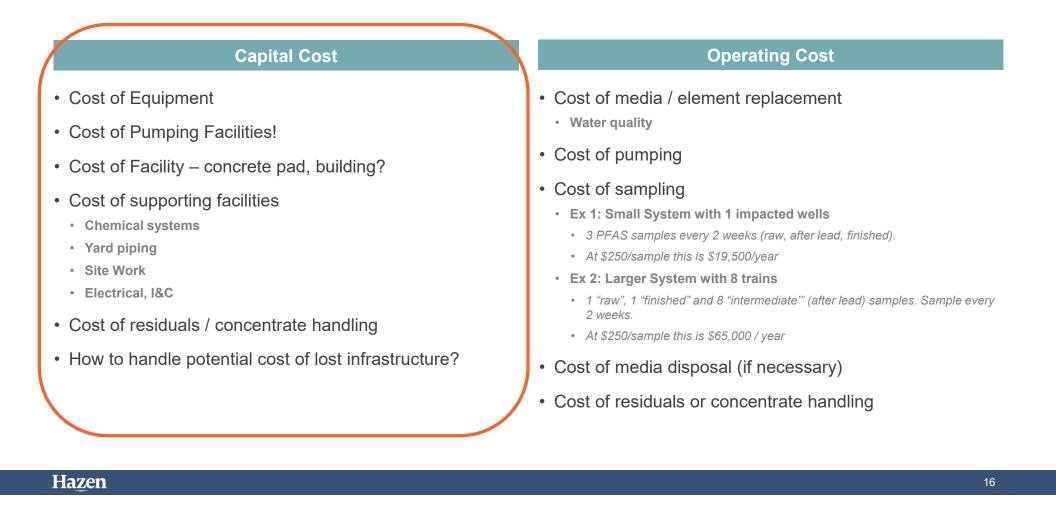
"Piloting" Groundwater Technology while meeting demands

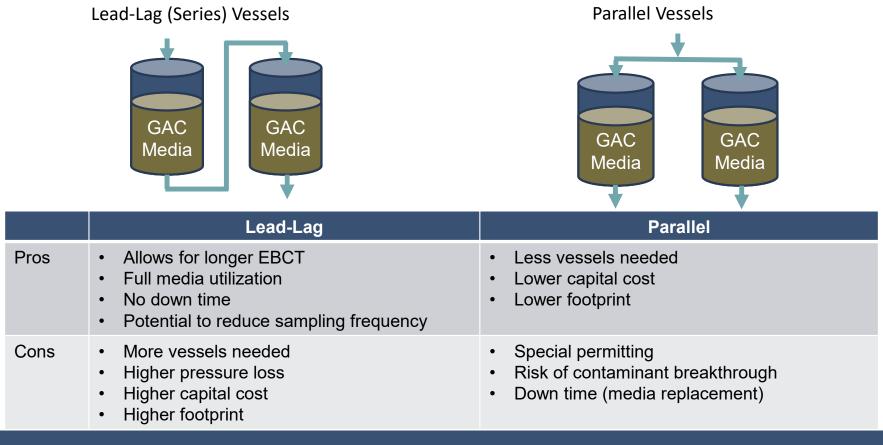



TARP = Tucson International Airport Area Groundwater Remediation

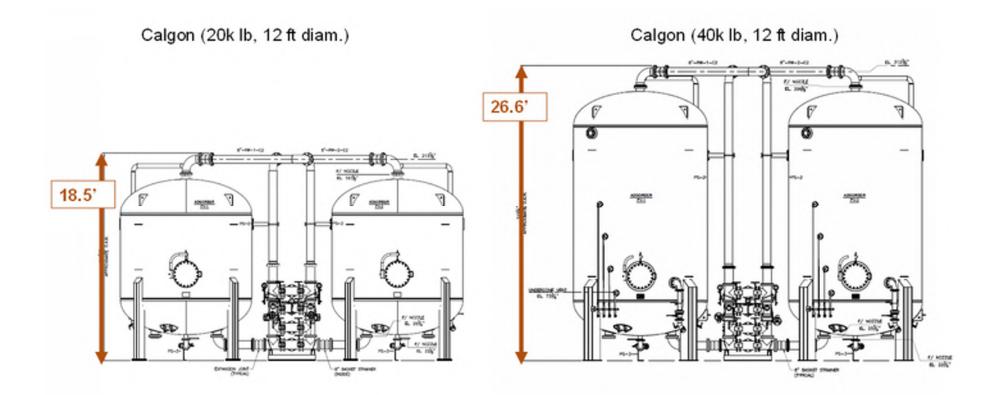
Examples of Phased Approach

Short-term blending or removing wells from service to achieve PFAS limits

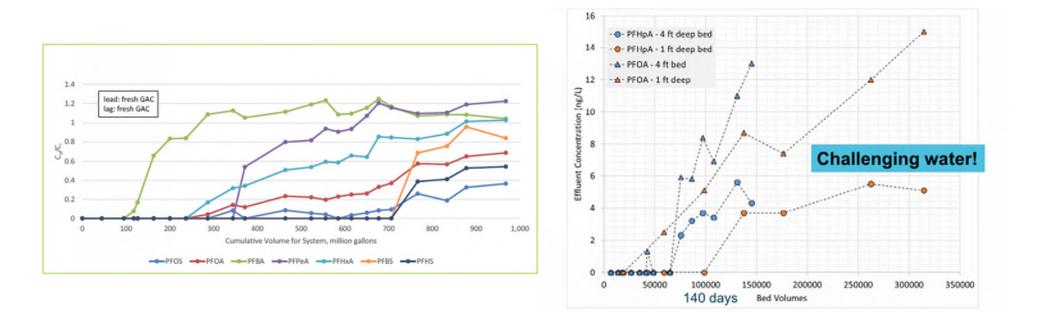

- 60 mgd groundwater plant
- Served by 23 large wells (> 3 mgd each)
- H-1 H-4 largely impacted by PFAS
- H-14 H-23 are highest water quality
- Upon observing this trend, utility removed wells H-1 – H-3 from service, dramatically reducing finished water PFOA + PFOS from 68ppt - ~40ppt



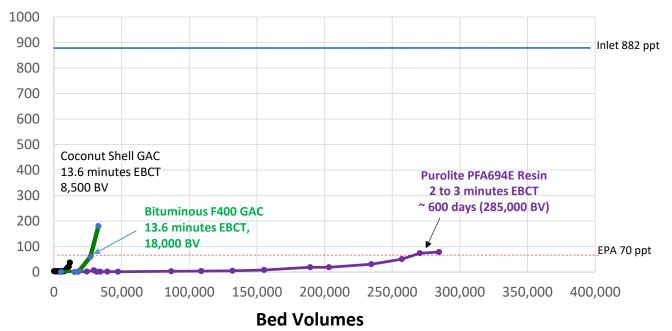
Cost Factors


What goes in to cost of treatment evaluations

Vessel Configuration – GAC or IX

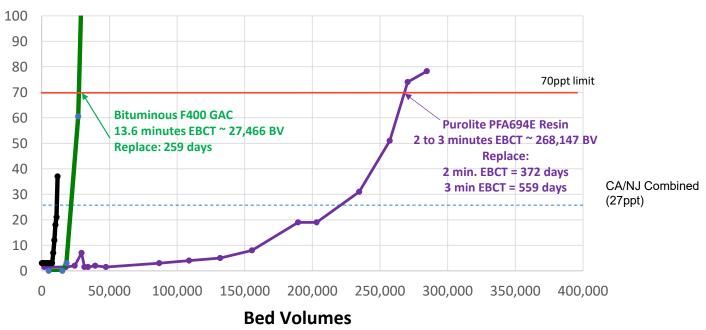

System Heights

What goes in to cost of treatment evaluations


Capital Cost	Operating Cost
 Cost of Equipment Cost of Pumping Facilities! Cost of Facility – concrete pad, building? Cost of supporting facilities Chemical systems Yard piping Site Work Electrical, I&C Cost of residuals / concentrate handling How to handle potential cost of lost infrastructure? 	 Cost of media / element replacement Water quality Cost of pumping Cost of sampling Ex 1: Small System with 1 impacted wells 3 PFAS samples every 2 weeks (raw, after lead, finished). At \$250/sample this is \$19,500/year Ex 2: Larger System with 8 trains 1 "raw", 1 "finished" and 8 "intermediate" (after lead) samples. Sample every 2 weeks. At \$250/sample this is \$65,000 / year Cost of media disposal (if necessary) Cost of residuals or concentrate handling
Hazen	19

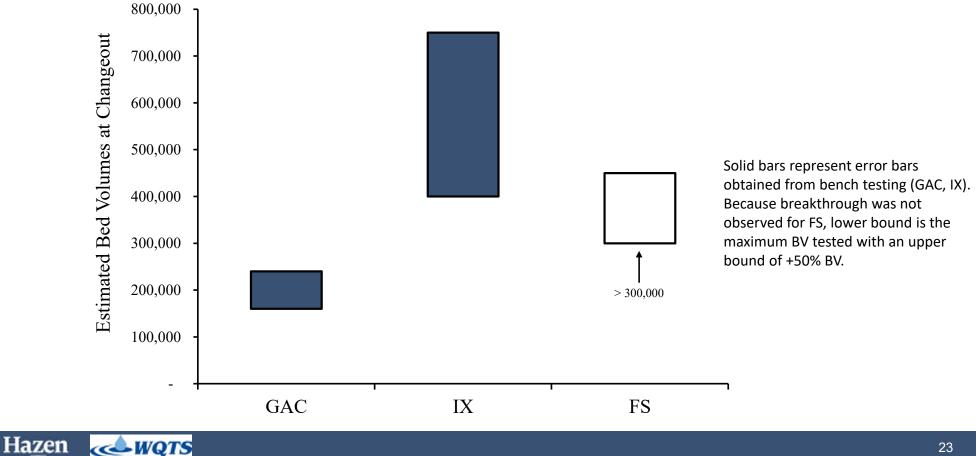
GAC or IX? Media selection is a big challenge

Comparing IX and GAC not straight forward


Here's what their data shows when they describe it...

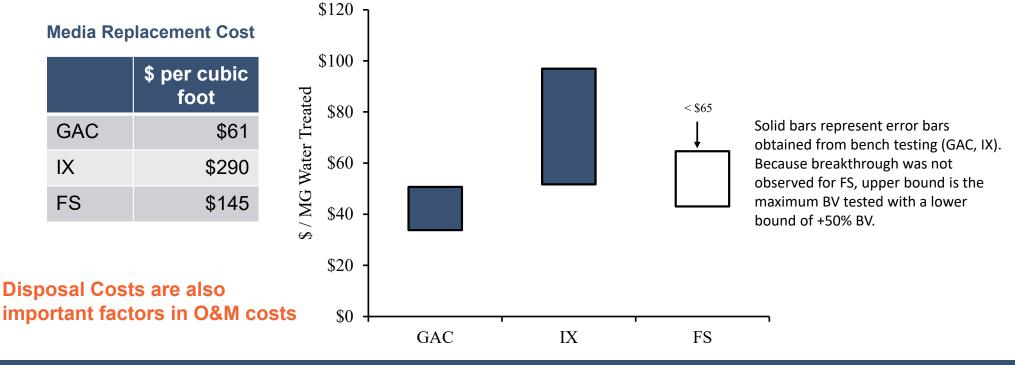
PFA694E Resin vs Coconut Shell & Bituminous F400 GAC

Comparing IX and GAC not straight forward


Here's the same data as I see it...

PFA694E Resin vs Coconut Shell & Bituminous F400 GAC

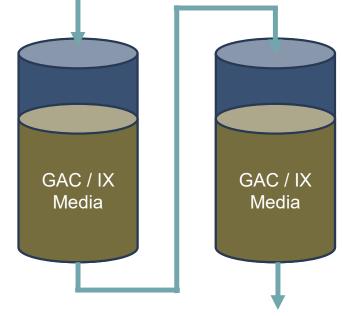
Water Quality can significantly impact performance of each


Example Comparison of Media Performance (based on PFOS)

23

Translating Bed Volumes to O&M Costs

• Although GAC would have much shorter BV, the media has a lower cost than IX or FS



Cost of sampling

- Why monitor breakthrough?
 - Regulatory Requirement
 - Optimize media replacement / regeneration
- In order to effectively monitor breakthrough, best to monitor at least 3 locations in each lead/lag train
 - Inlet
 - After the lead vessel
 - After the lag vessel
- PFAS monitoring takes time (often 2 3 week sample turnaround) and can be expensive
- Example Cost of sampling
 - Ex 1: Small System with 1 impacted wells
 - 3 PFAS samples every 2 weeks (raw, after lead, finished).
 - At \$250/sample this is \$19,500/year
 - Ex 2: Larger System with 8 trains
 - 1 "combined raw", 1 " combined finished" and 8 "intermediate" (after lead) samples. Sample every 2 weeks.
 - At \$250/sample this is \$65,000 / year

Lead-Lag (Series) Vessels

Cost of Media Disposal

EPA moves to regulate PFAS as "hazardous waste" has created a challenge for media disposal for utilities

Alabama GAC Example

2018 Information

Original quotes from 2 incinerators

- Vendor A: \$200/ton
- Vendor B could match

2021 Information

Updated quotes from 2 incinerators

- Vendor A: \$800/ton
- Vendor : No longer accepting GAC

Client had to rethink entire GAC procurement strategy and entered into a Custom Reactivation agreement with Calgon Carbon including a "Swing Load" for improved speed of replacement

California Media Challenges

- GAC reactivation not allowed
- · Incinerators have modified their waste IX media acceptance practices
 - Calgon prices have increased significantly
 - Covanta stopped accepting IX due to concerns about transfer of PFAS to air
 - Clean Harbors will accept IX media so far and appreciates the relatively high heaving value (IX > GAC > Alternate Media)

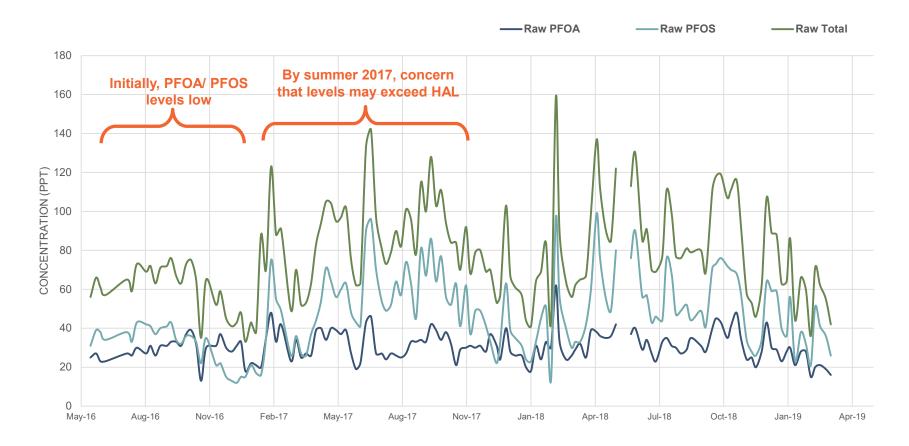
Costing Case Studies

Case Study Cost Summary

Project Location	GAC		IX		RO/NF	
	CapX (\$M)	O&M (\$K)	CapX (\$M)	O&M (\$K)	CapX (\$M)	O&M (\$K)
Alabama (10 mgd)	9.0	650	13.0	400	33	2,700
Alabama (6 mgd partial)	4.2					
New Mexico (2 mgd)	4.5	88	3.3	126		
New Mexico (200 gpm)	2.7	76	1.0	72		
New York (40 gpm)	1.0	25				
California (6.2 mgd)	15.0	100	11.1	200		
Massachusetts (2 mgd)	2.5 – 3.4	45	2.0 - 2.5	85		

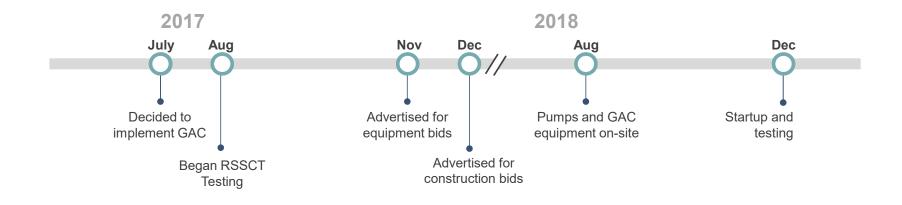
Case Study Cost Summary

Project Location	GAC		IX		RO/NF		
	CapX (\$M)	O&M (\$K)	CapX (\$M)	O&M (\$k()	CapX	O&M	
Alabama (10 mgd)	9.0	650	13	5	Construction	n Costs for RC	O / NF Facilities
Alabama (6 mgd partial)	4.2			•			
New Mexico (2 mgd)	4.5	88	3. (leg/s) 14			Internal	Hazen RO/NF Project
New Mexico (200 gpm)	2.7	76	1. ¹⁵⁰ 12			Constr	ruction Cost Records
New York (40 gpm)	1.0	25	stalle 10	J			
California (6.2 mgd)	15.0	100	8 Int In	\sim		in costs at th mgd) ~\$2/ga	ne smaller system al - ~\$6/gal
Massachusetts (2 mgd)	2.5 – 3.4	45	2.0 - ^d ₂₂ 6		• • •		
			1. 12 10 10 11 11 8 2.0 - 0.2 0			•	• y = -1.792ln(x) + 7.4923
				0	10	20 30	0 40 50 60 ize (mgd)



Alabama

Case Study 1


- 24 MGD Plant
- River water source
- River contamination from upstream carpet manufacturers
- Target Treatment:
 - Achieve Running Average of Less than Federal HAL 70 ppt
 - "Partial Treatment" and Blend to achieve PFAS targets

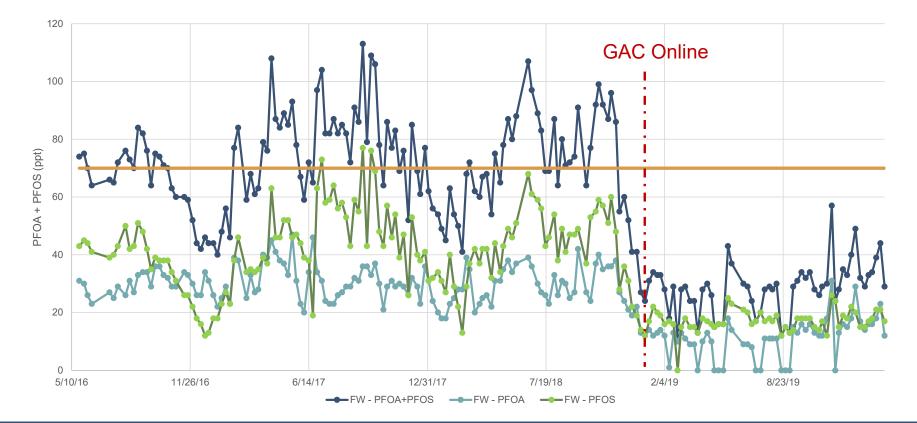
Source Water PFOA and PFOS Levels

Project Schedule

✓ Detailed Design completed in 4 months✓ On-line in 18-months

GAC Adsorption Basis of Design

Design Criteria	Value
GAC System Capacity	6 mgd
Total Number of Contactors	8
Number of Lead-Lag Pairs	4
Flow per Pair of Contactors	1.33 mgd
Empty Bed Contact Time (minutes)	20
Minimum GAC Capacity per Contactor	40,000 lbs


Phase 1 GAC Facility Project Costs

6 mgd capacity

GAC Facility Construction	\$2,713,500		
GAC Contactors and Media	\$1,228,900		
Intermediate Pumps and VFDs	\$205,200		
Total Construction Cost	\$4,147,600		
Engineering and Design	\$705,600		
Total Project Cost	\$4,853,200		
Unit Cost (per gpd)	\$0.81/ gpd		

GAC Adsorption for PFOA and PFOS Control

Full-Scale Data from WTP in Alabama, Partial Treatment

"Long-term" Technology Comparison

	Benefits	Drawbacks	Cost
GAC	 Removal of most PFASs Removal of other chemical constituents DBP precursor reduction 	 Carbon replacement costs can be costly Need to consider breakthrough time and regeneration cycles 	\$9M for 10 MGD \$0.7 M/year O&M
Ion Exchange	 Proven PFOA/PFAS removal Potential for removal of short chain PFASs 	 Single use of resin More costly per unit than GAC Competing ions may affect performance Limited removal of other contaminants Resin disposal 	\$13M for 10 MGD \$0.4 M/year O&M
Reverse Osmosis	 Proven PFOA/PFAS removal Removal of other chemical constituents DBP precursor reduction 	 Most costly option RO recovery – lose portion of WTP capacity Biofouling with surface water is key concern RO concentrate disposal/permitting 	\$33M for 10 MGD \$2.7 M/year O&M

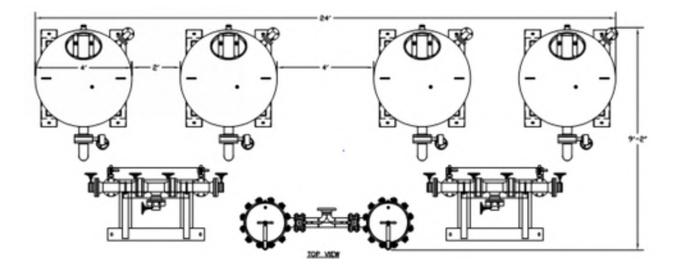
New Mexico

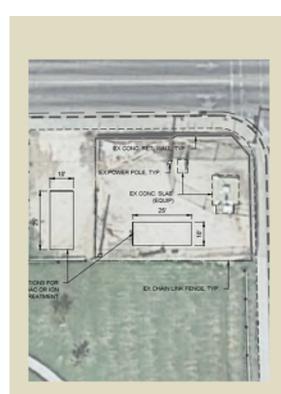
Case Study 2

- 2 MGD Treatment Plant
- Groundwater source
 - > 70 wells ranging in size from 40 gpm 200 gpm
- Contamination from upgradient airforce base
- Target Treatment:
 - Achieve PFAS concentration less than 5 ppt
- Questions to answer
 - Technology Selection
 - Effective Treatment Approach (Centralized vs. Wellhead)

Centralized versus Wellhead Treatment Approach

Single 2-MGD Centralized System

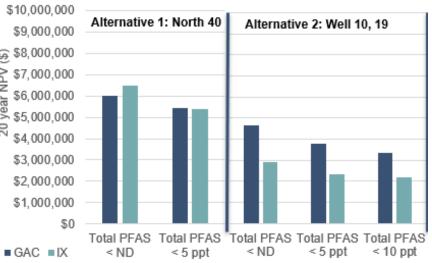



Led Lag GAC or IX GAC 2 Trains (4 vessels) 12' Diam. IX – 3 Trains (6 vessels) 10' Diam.

Centralized versus Wellhead Treatment Approach

Individual Wellhead Treatment

Cost Comparison for the approaches

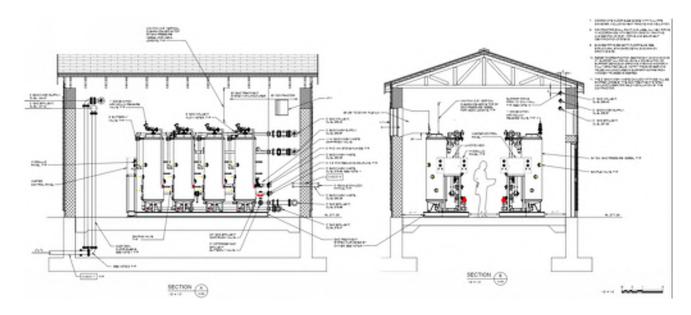

Alternative	Treatmo	ent Strategy ^{1,2}	∑PFAS < 5 ng/L
	GAC	Construction Cost	\$4,540,000
Alternative 1:	0,10	Annual O&M	\$88,000
2 mgd	IX	Construction Cost	\$3,286,000
	IX	Annual O&M	\$126,000
	GAC	Construction Cost	\$2,668,000
Alternative 2: 200 gpm		Annual O&M	\$76,000 + operating rules
	IX	Construction Cost	\$1,017,000
		Annual O&M	\$72,000 + operating rules

Big difference in appropriate technology selection at 200 gpm scale compared to 2 mgd scale

Cost Comparison	for the	approaches
------------------------	---------	------------

Alternative	Treatm	ent Strategy ^{1,2}	∑PFAS < 5 ng/L		
	GAC	Construction Cost	\$4,540,000)	
Alternative 1:	CAU	Annual O&M	\$88,000		
2 mgd	IX	Construction Cost	\$3,286,00	0	
		Annual O&M	\$126,000		
	GAC	Construction Cost	\$2,668,0	\$10,000,0 \$9,000,0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
Alternative 2:		Annual O&M	\$76,000 + opera	~	
200 gpm	IX	Construction Cost	\$1,017,0	2,000,0 ,000,0 ,000,0 ,000,0 ,000,0 ,000,0	
		Annual O&M	\$72,000 + opera	≈ \$4,000,0	

Big difference in appropriate technology selection at 200 gpm scale compared to 2 mgd scale


New York

Case Study 3

- 40 gpm Treatment Plant Upgrade
- Groundwater source
 - Combined wells sum to 40 gpm
 - Typically operated at 21 gpm
- Contamination from regional industrial contamination
- Target Treatment:
 - Achieve PFOA and PFOS concentration less than 10 ppt each

40 gpm GAC – NY GW

		Engineer's B	ase Estimate	Co	Construction Company A		Construction Company B		Construction Company C		Construction Company D				
Unit	Quantity	Unit Price	Total Price	Unit Price Bid	Total Bid Price	Deviation from Engineer's Base Estimate		Total Bid Price	Deviation from Engineer's Base Estimate	Unit Price Bid	Total Bid Price	Deviation from Engineer's Base Estimate	Unit Price Bid	Total Bid Price	Deviation from Engineer's Base Estimate
LS	1	\$996,120.00	\$996,120.00			9%			12%			20%			19%
ALLOW	1	\$6,075.00	\$6,075.00			0%			0%			0%			0%
ALLOW	1	\$3,925.00	\$3,925.00			0%			0%			0%			0%
			\$1,006,100.00			9%			12%			20%			19%
LS	1	N/A	N/A			N/A			N/A			N/A			N/A
LS	1	N/A	N/A			N/A			N/A			N/A			N/A
			\$1,006,100.00		\$1,128,413.00	12%		\$1,135,000.00	13%		\$1,229,890.00	22%		\$1,232,878.00	23%
			\$1,006,100.00		\$1,128,413.00	12%		\$1,135,000.00	13%		\$1,229,890.00	22%		\$1,319,629.00	31%

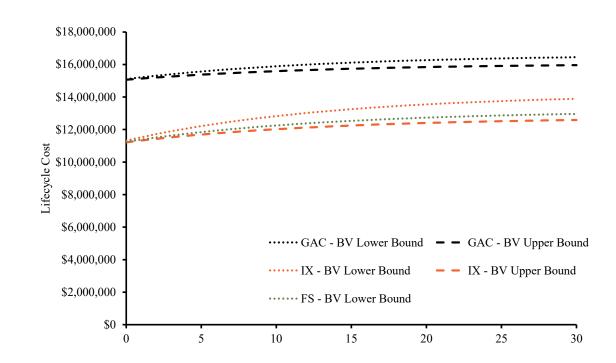


California

Case Study 4

- 6 mgd Treatment System
- Groundwater source
 - Needs to meet multiple treatment criteria (PFAS, Iron, etc.)
- Contamination from airport / industry
- Target Treatment:
 - Achieve PFOA, PFOS, PFBS concentration less than
 Notification Limits
 - *PFOA* = 5.1 *ppt*
 - *PFOS* = 6.5 *ppt*
 - *PFBS* = 500 *ppt*

GAC vs IX/FS Footprint per 5,000 gpm (~ 7 mgd)

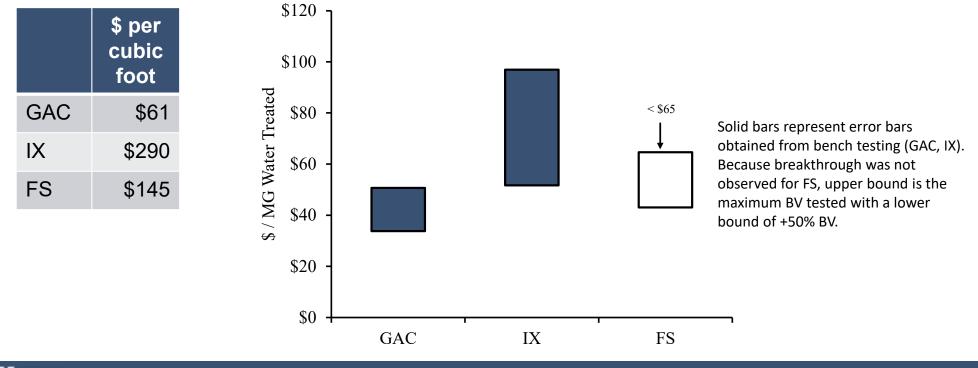


Lifecycle Cost Comparison (7.2 MGD)

• Capital:

	Equipment	Project
GAC	\$5.55M	\$15.0M
IX / FS	\$4.11M	\$11.1M

- Asset Life: 30 years
- Discount Rate: 7.64%



Lower capital and lifecycle cost for IX and FS compared to GAC

Translating Bed Volumes to O&M Costs

• Although GAC would have much shorter BV, the media has a lower cost than IX or FS

Cost Estimate	Description	No Greensand	With Greensand
COSt Estimate	Demolition	\$200,000	\$200,000
	Booster Pump	\$1,300,000	\$1,300,000
	Break Tank	\$1,800,000	\$1,800,000
	Greensand Filters	\$0	\$3,900,000
	Cartridge Filters	\$1,400,000	\$900,000
PFAS treatment	Ion Exchange/FS	\$11,100,000	\$11,100,000
accounts for ~33%	IX/FS Feed Pump Station	\$300,000	\$300,000
of the project's	Weak Acid Cation IX	\$13,000,000	\$13,000,000
construction	Decarbonator	\$1,900,000	\$1,900,000
	Electrical Building	\$500,000	\$500,000
costs	Site Work	\$700,000	\$700,000
	Yard Piping	\$3,300,000	\$3,300,000
	Electrical and Instrumentation	\$3,000,000	\$3,500,000
	PROBABLE CONSTRUCTION COST	\$38,500,000	\$42,400,000
	Project Costs (Design & ESDC, PM, CM, Legal)	\$11,600,000	\$12,800,000
	PROBABLE PROJECT COST	\$50,100,000	\$55,200,000

Massachusetts

Case Study 5

- "Supplemental" Well supplies 1 mgd each
- Treatment of 2 groundwater wells
 - Additional Water Quality Challenges (Fe/Mn)
 - Combine treatment?
 - Well pumping restrictions
- Target Treatment:
 - Achieve Compliance with "Massachusetts 6" < 20 ppt

Best Available Technology (BAT) defined by MassDEP

• GAC

RO

NF

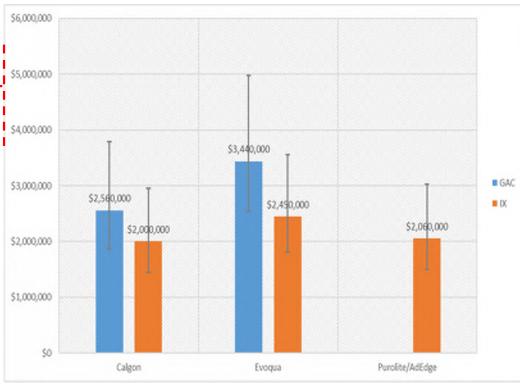
PAU

Most common PFAS treatment strategies in MA

• Ion Exchange (IX)

MADEP recognized Concentrate Disposal Challenges

Disposal, Efficiency Challenges – not approved by USEPA



Capital Cost Comparison of Technology

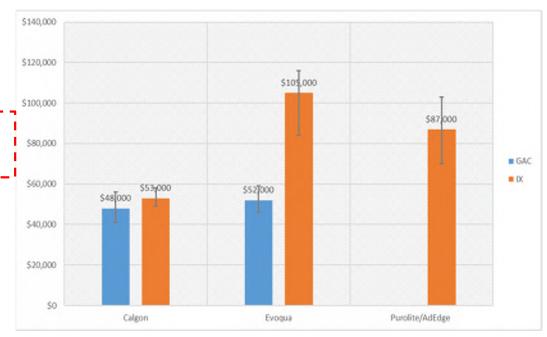
Treatment Technology	Vendor	Estimated Technology Cost ^{1,2}
GAC	Calgon	\$1,860,000 - \$3,790,000
GAC	Evoqua	\$2,540,000 - \$4,980,000
	Calgon	\$1,450,000 - \$2,950,000
IX	Evoqua	\$1,810,000 - \$3,560,000
	Purolite/AdEdge	\$1,500,000 - \$3,030,000

Technology costs reflect installed equipment that are specific to the IX and GAC technologies and building, construction, engineering, and 25% design contingency.
 Cost does not represent total project cost. Only technology specific equipment and building costs are included.

- IX less capital cost
- (1 train vs 2 vs GAC)
- = smaller building footprint
- Cost is for Technology (PFAS Equipment + Building) Only

Media Replacement

Treatment Technology	Vendor	Lead Vessel Media/Resin Replacement Frequency	Estimated Cost per Replacement
GAC	Calgon	6 - 12 months	\$60,000
GAC	Evoqua	6 - 10 months	\$65,900
	Calgon	18 - 24 months	\$226,000
IX	Evoqua	- 6 - 9 months	\$192,000
	Purelite/AdEdge	6 - 10 months	\$166,500


 Comparable media replacement frequency IX media is more costly to replace (typical)

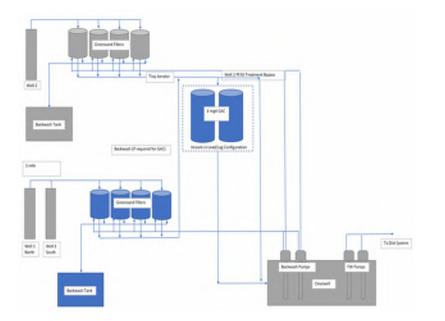
 Frequencies based on 100% operation of wells – actual replacement will be less frequent

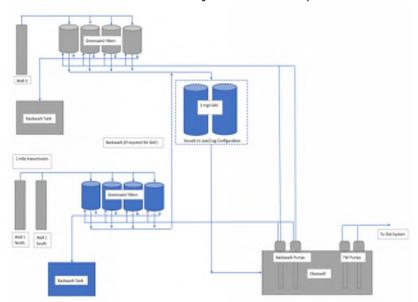
Annual Operating Cost

Treatment Technology	Vendor	Estimated Annual Operating Cost ¹					
GAC	Calgon	\$41,000 – \$56,000					
GAC	Evoqua	\$46,000 - \$59,000					
	Calgon	\$49,000 - \$58,000					
IX	Evoqua	\$84,000 - \$116,000					
Purolite/AdEdge \$70,000 - \$103,000							
1 Annual operating cost assumes Well 1 and 2 operate 47% of the year and at a flow of 41% of the rated well capacity based on historical operation of the wells.							

 Higher media replacement cost and quoted frequency leads to increase Operating cost for IX

Lifecycle Comparison of Technology Costs


Treatment Technology	Vendor	20-Year NPV ¹		\$1,000,000				
	Calgon	\$2,844,000 - \$5,130),000	56,000,000				
GAC	Evoqua	\$3,638,000 - \$6,391	,000				1	
	Average	\$4,208,000		\$1,000,000	I	\$4,937,000		
	Calgon	\$2,621,000 - \$4,344	F,000	-			54.140.000	
IX	Evoqua	\$3,829,000 - \$6,338	3,000	54,000,000	\$1,72,80			
IX	Purolite/AdEdge	- \$3,186,000 \$5,506	,000	-	\$3,280,000			= GAC
	Average	\$4,091,000		\$1,000,000				• X
1 20-Year NPV assumes We	lls 1 and 2 run 47% of the	year at 41% of rated capa	city.					
				\$1,000,000				
Treatment Technology	E Description	stimated Technology Cost	N. Start	\$1,000,000				
GAC	Technology Cost	\$3,000,000	N.	50				
GAC	Annual O&M	\$50,000			Calgore	froms	Purolite/AdEdge	
IX	Technology Cost	\$2,170,000	i N					
	Annual O&M	\$80,000	1					
¹ Technology Costs reflect insta construction, engineering, DWE contingency, ² Annual operating cost assume capacity.	labor, Owner Contingency,	and 25% design		\ \ \ \ \ \ \ \ \ \ \ \ \ 		mparable li sts for IX &		



Second Question – Best Way to Implement Treatment?

Option #1 – **1 MGD** PFAS facility w/ bypass

Option #2 – **2 MGD** PFAS facility (capability to treat both wells simultaneously for PFAS)

Transmission Main

Item	Low Range Estimate	High Range Estimate
Water Main	\$1,600,000	\$2,260,000
General Conditions	\$240,000	\$340,000
Below the Line Adjustments ¹	\$520,000	\$730,000
Contingency (25%)	\$590,000	\$830,000
Contract Allowances	\$60,000	\$80,000
Total	\$3,010,000	\$4,240,000

1. OH&P, Subcontractor OH&P/markup, Bonds/Insurance, Escalation to 2023.

Option #1 vs Option #2 Cost Comparison

Option #1 – 1 MGD PFAS facility w/ bypass

Item	Low Range Estimate	High Range Estimate
WTP Cost	\$2,800,000	\$3,960,000
General Conditions	\$420,000	\$590,000
Below the Line Adjustments ¹	\$910,000	\$1,280,000
Contingency (25%)	\$1,030,000	\$1,460,000
Contract Allowances	\$100,000	\$150,000
Total	\$5,260,000	\$7,440,000

1. OH&P, Subcontractor OH&P/markup, Bonds/Insurance, Escalation to 2023.

Option #2 – 2 MGD PFAS facility (capability to treat both wells simultaneously for PFAS)

Item	Low Range Estimate	High Range Estimate
WTP Cost	\$3,780,000	\$5,330,000
General Conditions	\$570,000	\$800,000
Below the Line Adjustments ¹	\$1,220,000	\$1,720,000
Contingency (25%)	\$1,390,000	\$1,960,000
Contract Allowances	\$140,000	\$200,000
Total	\$7,100,000	\$10,010,000

1. OH&P, Subcontractor OH&P/markup, Bonds/Insurance, Escalation to 2023.

Questions?

Erik Rosenfeldt, PE, PhD erosenfeldt@hazenandsawyer.com